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Abstract—An unsymmetric double cantilever beam test is described and its suitability for the
determination of interfacial fracture toughness is evaluated. The test specimen consists of a beam-
type geometry comprised of two materials, one ‘top’ and one ‘bottom,” with a crack at one end
along the bimaterial interface. The specimen is loaded in a splitting fashion similar to that of a
conventional double cantilever beam test. Due to the dissimilar in-plane and out-of-plane defor-
mations of the two legs, the load vs deflection response of the specimen is found to be nonlinear. A
nonlinear plate theory is used to predict the deformations of the specimen, and these results are
used in a crack tip element analysis to determine energy release rate and mode mixity. The analytical
predictions are verified by comparisons to results from two-dimensional, geometrically nonlinear
finite element continuum analyses for a variety of typical materials and test geometries. It is shown
that, by varying the relative thicknesses of the two materials, the unsymmetric double cantilever
beam test can be used on most bimaterial pairs to determine interfacial fracture toughness over a
reasonably wide range of mode mixities. © 1997 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

There has been a recent resurgence of interest in the fracture of bimaterial interfaces. In
part, this can be attributed to the growing use of structural surface coatings and fused and
bonded connections. An additional motivation has been the need to understand failure at
the fiber/matrix interface in advanced fiber composites. In-depth reviews of the efforts and
advances in the bimaterial fracture problem have been presented by Shih (1991) and
Hutchinson and Suo (1991). Without repeating their discussions, we point out that the
majority of the advances regarding the fundamental issues of interfacial fracture, for
example, the oscillatory nature of the stress singularity and the resulting ambiguity in mode
decomposition, have been through theoretical studies (e.g., Williams, 1959 ; England, 1965 ;
Erdogan, 1965 ; Rice and Sih, 1965; Rice, 1988). Progress in the experimental investigation
of interfacial fracture has, in many respects, lagged behind, although a number of excellent
test methods and specimens have recently been developed. Among others, these include
symmetric and asymmetric cantilever beam sandwich specimens (Cao and Evans, 1989),
the asymmetric, wedge-loaded double cantilever beam specimen (Xiao et al., 1993), the
notched four-point flexure specimen (Charalambides et al., 1989 ; Cao and Evans, 1989),
thin-layer sandwich specimens (Suo and Hutchinson, 1989 ; Thurston and Zehnder, 1993),
the brazil-nut sandwich specimen (Wang and Suo, 1990), the biaxially loaded bimaterial
strip (Liechti and Chai, 1991), symmetric and asymmetric three-point and four-point bend
specimens (O’Dowd et al., 1992), brazilian disks (O’Dowd ef al., 1992), and bimaterial and
sandwich blister specimens (Liechti and Liang, 1992). The relatively large number of test
methods and associated specimen geometries may be, in part, a response to overcome
certain difficulties associated with the complexity of loading, specimen geometry and/or
data reduction that are encountered in the bimaterial fracture problem. Similar concerns
motivate the present work. Our primary goals were to develop a test or series of tests for
which : (1) the specimens were simple to fabricate ; (2) the tests could be run in a uniaxial
load frame; (3) load vs deflection data from the tests could be used directly to obtain the
critical energy release rate; (4) closed-form techniques could be used to extract the mode
mixity from the test data; and (5) a complete range of mode mixities could be examined

799



800 V. Sundararaman and B. D. Davidson

for most bimaterial pairs. To this end, in this work an unsymmetric double cantilever beam
(UDCB) test is described. The UDCB test, along with the recently proposed single leg
bending test (Davidson and Sundararaman, 1996) and unsymmetric end-notched flexure
test (Sundararaman and Davidson, 1995), appear to meet the five criteria above. Specimens
for all three tests are similar and are relatively easy to fabricate. Loading fixtures and data
reduction procedures for the three tests are also relatively simple, and the three tests
combined can be used to determine fracture toughnesses over a complete range of mode
mixities for most bimaterial pairs.

In what follows,the UDCB test for fracture of interfaces between homogeneous iso-
tropic plates is presented and analyzed. A geometrically nonlinear plate theory is used to
obtain the forces, moments and deflections in the two cracked regions of the specimen.
These results are used with a closed-form crack tip element analysis (Davidson et al., 1995)
to predict energy release rate and mode mixity as a function of the loading and the
geometric and material properties. For typical bimaterial pairs, the analytical predictions
for deflections, fracture energy and mode mixity are verified by comparison to selected
results from geometrically nonlinear, two-dimensional continuum finite element analyses.
It is shown that the UDCB test can be used to determine the fracture toughness of any
specific interface over a relatively wide range of mode mixities. Suggestions for appropriate
test specimen dimensions and data reduction techniques are also presented, as is a discussion
of the conditions under which linear theory may be used to obtain a reasonably good
approximation for energy release rate and mode mixity.

THE UDCB TEST GEOMETRY

A schematic of the UDCB specimen and its associated loading, boundary conditions
and coordinate system is shown in Fig. 1. The boundary conditions are indicative of those
that would be encountered if the UDCB specimen were placed in a conventional tension
load frame gripping arrangement. It is assumed that freely rotating ‘loading tabs’ are used
(e.g., ASTM, 1994), such that only vertical loads are applied for the duration of the test.
The top and bottom ‘legs’ (cracked regions) of the specimen may be of different thicknesses
and materials, and the special case of equal thicknesses and material properties results in
the conventional double cantilever beam configuration (e.g., Broek, 1986). Notice that for
most other configurations, the dissimilar deflections, and hence in-plane shortening of the
two legs, results in a rotation of the entire specimen and a geometrically nonlinear test.

Referring to Fig. 1, we will define material / to be that material with the higher Young’s
modulus and material 2 to be that with the lower modulus, and the subscripts / and 2 on
various parameters will be used to denote values for materials 7 and 2, respectively.
Furthermore, material / will always be assigned as the ‘top’ leg, i.e., above the crack.
Considering the loading, there is no loss in generality associated with this definition. Thus,
the ‘positive 2’ direction will always point away from material / and towards material 2.
The origin of the z-coordinate axis is defined to be at the geometric midplane of the
uncracked region, and the origin of the x-coordinate axis is located at the crack tip. The
crack itself is planar and of length a. It is initially assumed in the analysis that either

Material I, High E APS

Material 2, LowE
Fig. 1. Schematic of the UDCB test.
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plane stress or plane strain conditions exist with respect to the y-coordinate direction. A
subsequent discussion is aimed at elucidating the effects of the true constraint conditions
that apply to a finite width specimen.

PLATE THEORY ANALYSIS

Analysis of deformation

Figure 2 shows the deformed shape of a UDCB specimen. It is assumed in the figure
that the upper leg has a lower bending rigidity than that of the lower leg. Note that, away
from the crack tip, the uncracked region remains undeformed and experiences only a rigid
body rotation. Also note that the applied loading is assumed to act at the midsurface of
the specimen legs, which is slightly different from the loading configuration shown in Fig.
1. This choice is made for the sake of simplicity of the closed-form nonlinear plate theory
analysis of deformation. In subsequent comparisons to finite element results, the finite
element model is assumed to have the boundary conditions of the physical test, as shown
in Fig. 1; these results will show that the plate theory analysis, as formulated, may be used
to accurately predict results for the physical test geometry. Finally, note that the definition
of the crack opening displacement, J, is chosen such that § = 0 in the absence of an applied
load.

Assuming that shear deformation may be neglected, the deformations of the cracked
portion of the UDCB specimen outside of the near-tip region may be obtained through a
‘corrected’ plate theory analysis. Similar to the classical theory, this analysis assumes that
plate cross sections initially normal to the midsurface remain planar and normal to the
midsurface after deformation. It is also assumed that no midplane straining of the two legs
of the UDCB specimen occurs during the test, and linear constitutive equations and the
small strain—displacement relations are utilized. The correction to the classical theory is
one that allows for large deflections and rotations. Essentially similar approaches have been
used for large displacement analyses of cantilever beams (Barten, 1944 ; Bisshopp and
Drucker, 1945) and conventional double cantilever beam (DCB) specimens (Devitt et al.,
1980 ; Williams, 1987). To incorporate the effect of shear deformation, one could model
torsional and/or extensional springs between the two materials in the uncracked region.
Such approaches have been used successfully for small deflections of conventional DCB
specimens (e.g., Kanninen, 1973 ; Weatherby, 1982 ; Olsson, 1992) and our results to-date
show that such an approach would be necessary to accurately model a UDCB specimen
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Fig. 2. Deformed configuration of the UDCB specimen.
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comprised of orthotropic materials with large ratios of Young’s modulus to shear modulus.
However, as will be verified in a subsequent section, ignoring shear deformations produces
acceptable results for those cases where materials / and 2 are isotropic.

With reference to Figs 1 and 2, the independent variables in the problem are the applied
load, P, or the applied displacement, d, the crack length, a, the thicknesses of the legs, ¢,
and #,, and the material properties of the regions above and below the crack plane. The
primary dependent variables that need to be evaluated are 6,, ,, and 8,. All slopes are
defined with respect to the x—z coordinate axes ; thus, 8, and 6, as pictured are positive and
the slope of the top leg at the loaded end is negative. However, in a subsequent numerical
solution procedure, we prefer to search for positive 8, and 8,. To this end, the end slope of
the top leg will be taken to be —8;; with this definition, 8, and 6, will always be greater
than zero. The slope of the uncracked region, 8,, may be positive, zero or negative depending
on the relative bending rigidities of the two legs. Specifically, under the present choice of
coordinate system, 8, will be-positive if the flexural rigidity of the bottom leg is greater than
that of the top leg. It is assumed that the test is conducted under force control (specified
P); an analogous, albeit more cumbersome analysis can be performed for a UDCB specimen
subjected to specified displacements.

The Euler—Bernoulli moment—curvature relationship for the midplane of either of the
cracked regions of the specimen may be written as (Bisshopp and Drucker, 1945)

M;(x) ;dsi
T (I+sp)rdx

4y

where i denotes the cracked region of interest, D; (i = 1,2) is its flexural modulus, M;(x)
and k(x) are the local bending moment and curvature at an arbitrary location x, and
s{x) = tan ¢, where ¢,(x) is the slope of the midsurface at any location x. For a homo-
geneous isotropic cracked region of modulus £, Poisson’s ratio v, and thickness ¢; in plane
strain (g,, = 0)

277 a-vy

D, &)

For plane stress (o,, = 0), v, is set equal to zero in the above.

For subsequent use, we introduce ‘local’ coordinate axes, x,; and x,, for the top and
bottom legs, respectively, as shown in Fig. 2. These local axes are utilized in the analysis of
specimen deformations. For the top leg, the boundary conditions on s, are given by:

5i(x; =0)=tanf,; s,/(x, =%x;)= —tané,. 3)

Here, %, is the moment arm from the load P to the midplane of the top leg at the crack tip
cross-section as shown in Fig. 2. From equilibrium considerations

M (x;) = P(%,—x;). 4

Following standard plate theory notation, the load, P, and moment, M,(x,), are both
defined on a per unit width basis.

To obtain an equation involving the primary variables 8, and 8,, first substitute eqn
(4) into (1) and, choosing i = 1, integrate from x; = 0, s; = tan 8, to an arbitrary x,, where
s, = tan ¢,. This yields

1

—P 2
sin ¢, —sin 0, = 7(x,x,— ﬂ) 5)

Note from Fig. 2 that ¢, = —8, at x; = %;; thus
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2D,(sin @ in 6
x1=\/ ((sin I,,+sm ) ©)

Next, solve eqn (5) for x,; and use the expression for %, given by eqn (6) to obtain

% =xl_\/2D,(sm0;J+sm¢,)‘ )

As it is assumed that no midplane straining occurs, the length of the top leg in its
deformed state must equal the crack length, a. Using eqn (7), this condition may be
expressed as

a=r./1+s2dx _— /&JVH'——%—— )
o e 2P}, /sin6,+sin g,

which gives one equation in the two unknowns 6, and 6.
An analysis of the deformation of the bottom leg proceeds as above, except with a sign
change in the load, and results in :

2 in 8, —si
2= \/ D,(sin ; sin 6;) ©
92
am |22 j __ 9 (10)
2p 6, /Sin8,—sin ¢,

where D, is the flexural rigidity of the bottom leg. Equation (10) introduces @,, and is the
second of three equations that need to be solved for 8,, 6, and 6,. From Fig. 2, the following
relation between x, and %, can be deduced :

t .
)?2=X1+§Sln00 (11)

where ¢ is the thickness of the uncracked region (cf. Fig. 1). The third equation involving
8y, 8, and 6, is found by substituting eqns (6) and (9) into (11) to obtain

P P + Esm 0,. 12)

\/2D2(sin 0,—sin6,) \/21), (sinf,+sinf,) 1 |
Equations (8), (10) and (12) are three simultaneous nonlinear equations for 8,, 6, and
8,. These may be solved for a given specimen geometry and applied load using an appro-
priate numerical search procedure ; in this work, Newton’s method is utilized. Once 8,, 8,
and 6, have been obtained, X, and %, may be computed from eqns (6) and (9), respectively.
For subsequent use when comparing the plate theory solutions to finite element results,

the moment arm from the load P to the crack tip, %, is given by

t t
x:x,+5’sineo=x2—§sin00. (13)

Furthermore, under force controlled loading (specified P), the crack opening displacement,
o (cf. Fig. 2), can be shown to be
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ID, (P sin¢d¢ D, (% sin¢gd¢ t
5= _’J — 4} = | —————=—=(1—cos0,). (14)
2P ] 4, /sin @, +sin ¢ 2P}, \/sinB,—sing 2 ’

Finally, note that the singularity that occurs in the integrands of eqns (8) and (10)
may be avoided by rewriting the integrals, using integration by parts, as

jf’ do _ +2[‘/sinGisin¢]”¢2J‘ﬂ,/sinBisindJsind)qu
e \/sinf+tsing cos ¢ « cos’ ¢ '

A similar approach may be used for the integrals in eqn (14).

(15)

o

Energy release rate determination

The total energy release rate for the UDCB specimen may be obtained by substituting
the results of the previous analysis into the crack tip element equations (Schapery and
Davidson, 1990 ; Davidson et al., 1995). These equations express the total energy release
rate in terms of a concentrated crack tip force, N,, and moment, M. Within the context of
plate theory, N, and M, arise to enforce displacement compatibility in the uncracked region
at the interface between the upper and lower materials. A plate theory version of Irwin’s
(1957) virtual crack closure method yields the total energy release rate (ERR) as

1 .
G=E(C,Nf—i—csz+2,/c,c2NcMcsml“) (16)

where
Ci2

vV Ci€2

The constants c;, ¢, and c,; are based on the general expressions provided by Schapery and
Davidson (1990) and Davidson et al. (1995). For a bimaterial UDCB specimen geometry
comprised of isotropic materials, they are given by:

sinl” =

(17)

4 4
_ 4 1
“=%nVYEL (18)
2 12
_ 1
=5t ES (19)
6 6 20)

=3 — o3
YT EM Ef

As before, subscripts / and 2 refer to the top and bottom materials, respectively. For the
UDCB geometry, the quantities N, and M, are (Schapery and Davidson, 1990 ; Davidson
et al., 1995)

Ny,
5,

Nc=_NI; MC=MI_ (21)

Here, N; and M, are the classical plate theory in-plane force and bending moment, respec-
tively, that are in material / at the crack tip. These act on the ‘loading plane’ depicted in
Fig. 2. Considering the deformed geometry, they are given by



Interfacial fracture toughness determination 805

where 8, and X, are determined using eqns (6), (8), (10) and (12).

Mode decomposition

The crack tip element approach may also be used for the analytical determination of
the stress intensity factor and mode mix. This approach will produce identical predictions
as the method developed by Suo and Hutchinson (1990), and is chosen primarily to be
consistent with the notation of our other works (Davidson and Sundararaman, 1996;
Sundararaman and Davidson, 1995).

The complex stress intensity factor, K, can be written as (Davidson ez al., 1995),

2 o
K= \/%cosh E(iN./¢;+ M,/ c.¢T) T~ (23)

where
2 2
H=2 4= (24)
1 2
The bimaterial constant, ¢, is given by
1 1-58
= =2 25
<o ln(l + ﬁ) 23)
and f is a Dundurs’ (1969) parameter, defined as
1[d-vy) (d-=v)
- _ 2
B H [ E, E; (26)

where, for plane stress, v; = v,, and for plane strain, v; = v,/(1 —v).
Following Rice’s (1988) suggestion, we define X; and K, through the equation,

KT® = K, +iK, Q7

where T'is defined to be a fixed quantity that does nor scale with specimen size. Substituting
(23) into (27) yields the individual stress intensity factors as

P . ~
K = \ﬁ—{cosh ne[— N/, sinQ+ M, /c,cos(Q+T)] (28)
) - ~
Ky = \/% cosh 7e[N,./c; cos Q-+ M, /¢, sin(Q+T)] (29)
where
R T
Q- gr+sm(?). (30)

In eqns (23) and (30), Q; is the ‘mode mix parameter’ that determines the ratio of
Ky/K, and T is the characteristic dimension, which scales with specimen thickness, upon
which it is based. This characteristic dimension enters explicitly into the determination of
Q; (Davidson et al., 1995). A closed-form expression for £, i.e., Qr where T = ¢, is
presented by Davidson et al. (1995). The relationship between Q7 and €, is given by
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T
Qr = Q,I-H-:ln(—). 3D

]

In many cases, it may be most convenient to test UDCB specimens of a given bimaterial
pair that have different thickness ratios, #,/¢,, but the same total thickness, t = ¢, +1,. If
this is the case, it may be simplest to base K, K;; and Q; all on ¢, i.e., one could choose
T = T = 1. This simplifies all the scaling relationships, as eqn (30) now gives & = Q,. If the
closed-form expression for the mode-mix parameter given by Davidson et al. (1995) is to
be used, then eqn (31) gives the transformation from Q, to Q,.

The results of fracture tests of UDCB specimens with a variety of thickness ratios may
be presented in the form of a G.(¥¢) curve, where G. is the critical energy release rate and
¥ ¢ is equivalently referred to as the phase angle or the mode mix. It is based on the fixed
distance 7" and is given by

tan () = K New/e1005Q+ Mo /essin(@+T)
K; -—Nc\/asinﬁ.{.Mc\/chOS(ﬁ_i_r)

(32)

This data may subsequently be used to predict fracture in geometries or test specimens
of different absolute dimensions. If desired, the G () curve may be expressed in terms of
a different absolute distance, say L, using the transformation,

~

Y= t//f+eln<]72> (33)

Equations (28) and (29) may also be related to the ERR components (Davidson et al.,
1995) to obtain

1 . A 9
Gi = 5[= Ne/r sin @+ M /¢ cos(@-+ TP (34)
1 A A
Gu = 5 [Ne/1 080+ M. /2, sin(@-+ D], (35)

The total energy release rate, G = G,+ Gy, is independent of the value of Q and will
always equal that given by eqn (16). When ¢ = 0, the energy release rate components retain
their classical definitions (in terms of ¢, and 7,.). When ¢ # 0, G, and Gy; are dimensionally
convenient generalizations of the classical definitions, and their use in fracture problems is
similar to the use of K; and K|,. However, use of G; and G;; will not indicate a possible
dependence of the toughness, G, on the sign of y/». To allow for such possible dependence,
we will subsequently express our results using G and 7.

FINITE ELEMENT VERIFICATION

In this section, the preceding analysis is verified by results from two-dimensional
geometrically nonlinear finite element analyses of the UDCB specimen. Three specimen
types are considered : (1) a monolithic isotropic material (¢ = 0.0); (2) alumina/niobium
(plane strain ¢ = —0.0201), with elastic properties taken from Stout et al. (1991); and (3)
glass/epoxy (plane strain ¢ = —0.0604), with elastic properties taken from Liechti and Chai
(1991). The Young’s moduli and Poisson’s ratios of the materials comprising the three
specimen types are presented in Table 1. The choice of these specimen types essentially
‘spans’ the range of material property mismatch ratios that one would expect to encounter
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Table 1. Material properties

Material : Monolithic Alumina Niobium Glass Epoxy
E (GPa) 180.0 386.0 107.5 68.9 207
v 0.30 0.22 0.38 0.20 0.37

in typical bimaterial applications. In all cases, mode mixity will be based on the definition
given by eqn (32) with 7 = ¢ = 3.048 mm for all specimens. Plane strain conditions are
assumed.

Finite element models

All finite element models used in this study were discretized versions of the specimen
geometry shown in Fig. 1. Three different geometric models were constructed, cor-
responding to thickness ratios (¢,/t;) of 1.0, 0.5 and 0.2. The total thickness, ¢, of each
model was 3.048 mm. The total length of each model was 66.7¢ and each model included a
crack with a nondimensional crack length, a/¢, equal to 33.3. Thus, by appropriate place-
ment of the loading point and boundary conditions, specimens with various crack lengths
could be analyzed. In what follows, we consider four different crack lengths, corresponding
to aft values of 8.33, 16.7, 25.0 and 33.3. Also, by appropriate specification of material
properties, at any crack length five different thickness ratios (¢,/¢; equal to 5.0, 2.0, 1.0, 0.5
and 0.2) can be obtained for bimaterial specimens of both the glass/epoxy and alumina/
niobium systems, and three different thickness ratios (1.0, 0.5 and 0.2) can be obtained for
the homogeneous case. Geometrically nonlinear analyses were performed for all of these
52 different combinations.

All finite element analyses were performed using the commercially available finite
element software ABAQUS, licensed from Hibbitt, Karlsson and Sorensen, Inc. Eight
noded, isoparametric, quadrilateral plane strain continuum elements were used to construct
the meshes. The loading and boundary conditions were applied in accordance with Fig. 1.
The load was applied incrementally, and the equilibrium equations, with respect to the
deformed geometry, were solved at each increment.

Figure 3 presents a view of the crack tip neighborhood from a typical model. This
particular mesh is from the case ¢,/t, == 0.5. The mesh refinement in the crack tip region is
essentially the same as described by Davidson et al. (1995). Mesh refinement requirements
as described in the above reference were generally adopted, although we did conduct our
own mesh refinement studies to ascertain the independence of both €, and 4 with respect
to the finite element mesh. All results were obtained from models that contained square
elements in the crack tip region and for which the length of the near-tip elements was 1/128

Wi
1 l k crack

Fig. 3. Typical finite element mesh near the crack tip.
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Table 2. Mode mix parameters, Q, (in degrees), from finite element analyses

Monolithic Alumina/Niobium Glass/Epoxy
tifts (=00 (¢ = —0.0201) {e = —0.0604)
0.2 14.28 6.67 —14.78
0.5 7.04 —3.88 —22.31
1.0 0.00 —11.46 —25.79
20 —-7.04 —16.82 —28.10
5.0 —14.28 -21.15 —30.99

that of the smaller of 7, or z,. Outside of the crack tip neighborhood, the mesh consisted
solely of rectangular elements with aspect ratios between 1/10 and 10/1.

The total energy release rate, GG, was always obtained by the virtual crack closure
technique (Rybicki and Kanninen, 1977). Because of the large rotations that occur at the
crack tip, the modified version of this technique as described by Davidson and Krafchak
(1995) was adopted. Mode decomposition was accomplished using the modified crack
surface displacement (CSD) method (Davidson ez al., 1995); this is a somewhat simpler
variation of the approach originally suggested by Matos e al. (1989). The mode mix
parameter, Q,, for each bimaterial pair and thickness ratio was also determined from linear
runs of our finite element models using the technique described by Davidson ez al. (1995).
These values are presented in Table 2. In general, the finite element results in the table are
very close to those given by the closed-form expression of Davidson et al. (1995). A detailed
comparison between the two methods of obtaining Q, is presented in an earlier work
(Davidson and Sundararaman, 1996). ~

In what follows, analytical predictions for the deformation, energy release rate and
mode mixity for the various UDCB specimens are compared to the corresponding finite
element results. Initially, comparisons are made between selected nonlinear plate theory
results (abbreviated as NPT) and the corresponding nonlinear finite element results
(abbreviated as FE). A subsequent section presents results from a linear plate theory
analysis, and is accompanied by a discussion of when this simpler approach is valid. In all
cases, the results from the geometrically nonlinear finite element analyses are assumed to be
the most accurate. Hence, when it is stated that a value is underpredicted or overpredicted, it
means that the plate theory results are smaller or larger in magnitude, respectively, than
the corresponding finite element result. In an attempt to present all relevant information
concisely, in many cases comparisons will be presented only for selected bimaterial pairs,
thickness ratios (¢,/¢,), and/or slenderness ratios (a/f). Results for other configurations are
generally described in the accompanying discussions.

Specimen deformations

Since the crack tip element equations utilize the results from the deformation analysis,
an examination of the accuracy of these NPT predictions will aid significantly in under-
standing subsequent ERR and mode mix comparisons. Figure 4a and b presents the slope
of the top leg, 8,, as predicted by the NPT analysis vs those calculated from the FE results.
The FE values were found by fitting a second order polynomial to the deformed positions
of the last three nodes at the end of the appropriate cracked region (and along the midplane)
and determining the slope of this line at the end point. All comparisons are in terms of a
nondimensionalized load, 7, defined as

_ 1 1
P=Pad’ (H + F) (36)
1 2

where P is the load per unit width. This expression was chosen simply because it separated
the various curves that are presented by an amount sufficient to distinguish individual
results, yet allowed us to present results for many different cases on a single graph. Also,
in the interest of brevity, only the results for a/t = 8.33 and 33.3 are shown ; at any thickness
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,
(degrees)
(a)
80
60
8, 40
(degress)
20
(b)
0
0.01 0.1 _ 1 10
P
Fig. 4. Nonlinear plate theory predictions of 6, vs finite elements results for (a) & =0.0,
(b) ¢ = —0.0604.

ratio, the percent errors in the plate theory predictions for these cases bounded those from
the other two slenderness ratios. Also, only the results from the monolithic (¢ = 0.0) and
from the glass/epoxy (¢ = —0.0604) specimens are shown, as the results from these bima-
terial types bounded those for the alumina/niobium specimens. Furthermore, results only
from thickness ratios of 0.2 and 1.0 for the homogeneous case, and from ¢,/¢, of 0.2 and
5.0 for the glass/epoxy bimaterial pair are presented, as these cases bounded the results
from the other thickness ratios for each bimaterial system in Fig. 4a and b. All plate theory
results are represented by continuous curves; dashed curves represent a/t = 8.33 and solid
curves depict a/t = 33.3. All FE results are depicted using discrete symbols.

The results of the figures indicate that, in general, the nonlinear plate theory predictions
for the end slope of the top leg are quite good and tend to increase in accuracy with
increasing slenderness ratio. Similar trends were also observed for the end slope of the
bottom leg, 8,, and for the siope of the crack tip cross-section, 8,. The worst correlation is
for #, at t,/t, = 0.2 for the monolithic case, and for 8, at ¢,/t, = 5.0 for the glass/epoxy. In
both cases, the NPT overpredicts the corresponding FE values, and in both cases this
‘worse case’ correlation is for the end slope of the leg that has the highest bending rigidity
of all possible combinations investigated for that particular bimaterial pair. The difference
in 6, between the FE and NPT predictions essentially follows the larger of 8, or 8,; larger
errors in the end slope correspond to larger errors in the slope of the uncracked region.
Overall, in all cases the correlation is quite good. Also, as would be expected, the value of
0, is very close to the end slope of the leg with the higher bending rigidity when the mismatch
in bending rigidities of the legs is large.

Perhaps more illuminating are the results for the total opening deflection, J, and the
moment arm, £. Comparisons between the FE and NPT predictions for the monolithic case
are presented in Figs 5 and 6. The definition of 6F is analogous to that used for the crack
opening displacement in the plate theory analysis, i.e., it is chosen such that 6™ = 0 when
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Fig. 5. Nonlinear plate theory predictions of opening deflection versus finite element results for
&¢=0.0and a/r = 8.33.

P = 0. These results are at a/t equal to 8.33, and the correlation between the NPT and FE
results improves with increasing slenderness ratio. The response of the specimens with
thickness ratios of ¢,/t, = 0.2 and ¢,/t, = 1.0 are markedly different, and will therefore be
discussed separately ; the third thickness ratio, ¢,/t, = 0.5, is observed to display elements
of both.

For the case where the leg thicknesses are equal, the NPT predictions for deflection,
4, are smaller than the corresponding FE results for all P. This underprediction of é with
P is expected in view of the fact that the NPT neglects shear deformations. The initial
decrease in 6"FT/6FF with P is primarily caused by shear deformations near the crack tip.
These shear deformations result in greater apparent root (near-tip) rotations of the cracked
regions of the FE model as compared to the NPT results. As P becomes large, the gradual
relative increase of the NPT deflections as compared to the FE predictions is a result of the
increasing value of the membrane stress that occurs in the FE model; this effect is also
ignored in the NPT analysis. That is, the relative stiffness of the FE model increases as
more load is carried through membrane forces. With reference to x in Fig. 6, for ¢;/t, = 1.0,
% is overpredicted for all P. Note that the predictions of x do not improve after the ratio of
deflections (Fig. 5) begins to increase. Rather, the increased root rotation of the FE model
causes a more rapid decrease of x in the FE than the NPT results, despite the stiffening of
the FE model that occurs due to membrane effects. All of these and subsequent observations
were verified by overlaying the deformed shapes as predicted by the FE and NPT models,
as well as by examining the FE predictions for the midplane straining of the cracked regions.
One other interesting observation is the relatively good correlations of 8, (cf. Fig. 4a) and
0,. That is, the FE deflections are larger, but both methods predict essentially the same
slope for the outer portion of the cracked regions.

Now, consider the case where ¢,/t, = 0.2. Under small loads, the comparison is similar
to that described above: shear deformations cause an effective larger root rotation in the

1.08
1.04
=/
1.00
0.96 Frrr———
0.01 01 1
P

Fig. 6. Nonlinear plate theory predictions of % vs finite element results for ¢ = 0.0 and a/r = 8.33.



Interfacial fracture toughness determination 811

FE model. Thus, the NPT predictions for é are smaller, and its predictions for % are larger.
As the deflection increases, the FE model predicts that an appreciable amount of membrane
straining occurs in the thinner region. This is because the thin region accounts for the
majority of the deflection in this specimen (cf. Fig. 2). As in the symmetric case, this stiffens
the FE model’s response. However, in this asymmetric case, the membrane stresses also
cause the rotation of the uncracked region, 6,, to be smaller than would otherwise be
predicted. Thus, the NPT begins to overpredict 8,, 6, and 8, (cf. Fig. 4a) and the trends in
SNPT/SFE and x™FT/%FE reverse : the NPT begins to overpredict deflection and underpredict
x. With reference to Fig. 6, the #,/t, = 0.5 specimen shows trends similar to the ¢,/t, = 1.0
case at low P, and begins to display elements of the ¢;/z, = 0.2 case as P increases. These
behaviors are also evidenced by all of the bimaterial specimens, and the above discussions,
along with a consideration of the relative bending rigidities of the two regions, may be used
to understand the observed results.

Energy release rate

Figures 7 and 8 present comparisons between NPT and finite element ERR predictions
as a function of thickness ratio, slenderness ratio and nondimensional load. As for previous
comparisons, the errors in the NPT predictions for the monolithic and glass/epoxy speci-
mens bound those for the alumina/niobium, and results for this latter specimen are therefore
not presented. Figure 7a and b presents results for the monolithic case (¢ = 0.0) for
slenderness ratios of 8.33 and 33.3, respectively. For all three thickness ratios, the NPT
underpredicts G at small loads; this is primarily due to the neglect of shear deformations
in the NPT analysis. For ¢,/t, = 1.0 and 0.5, the overprediction of x, Fig. 6, causes the NPT
predictions to improve with increasing P. That is, overprediction of these quantities tends
to compensate for the neglect of shear deformation [cf. eqns (13), (16), (21) and (22)]. The

1.08 1.02 5
1.04 ] 1.01 3
e/t ¢ /¢
1.00 § 1.00 ;
0.96 0.99
i
0.92 e 0.98 et
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(a) (b)

Fig. 7. Comparison of energy release rates from nonlinear plate theory and finite element analyses
for e = 0.0 and (a) a/r = 8.33, (b) a/r = 33.3.
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Fig. 8. Comparison of energy release rates from nonlinear plate theory and finite element analyses
for e = —0.0604 and (a) a/r = 8.33, (b) a/t = 33.3.
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differences in the NPT and FE results for the ¢,/t, = 0.2 specimen are also due to the effects
of shear deformation and the differences in the predicted value of . In this case, however,
X is underpredicted (cf. Fig. 6), which causes the observed reversal in the curve. Additionally,
the plate theory analysis does not account for the effect of the membrane stresses on G.
Overall, the predicted values of G for the monolithic case are quite good, and a comparison
of the vertical scales in Fig. 7a and b shows that the NPT predictions improve with
increasing slenderness ratio.

Results for the glass/epoxy specimens are shown in Fig. 8a and b. At thickness ratios
of 0.2 and 0.5, the ratios of bending rigidities are similar to the 0.5 and 1.0 monolithic
geometries. The trends in accuracy of the NPT ERR predictions are also similar, except
the effect of shear deformation on ERR is more pronounced for the bimaterial specimens.
At thickness ratios of 1.0, 2.0 and 5.0, the ratios of bending rigidities in the various
glass/epoxy specimens are close to or larger than that for the ¢,/t, = 0.2 monolithic case.
However, the effect of shear deformation on ERR for the three largest thickness ratios of
the bimaterial samples is more pronounced than the ¢;/t, = 0.2 monolithic case. In the
bimaterial samples, the ratios of ERR never rise above 1.0 for these three geometries. The
glass/epoxy specimen with a thickness ratio of 5.0 shows the worst correlation due to the
early and significant onset of membrane straining. As in all previous comparisons, the NPT
predictions are seen to improve with increasing a/z.

Mode mixity

Figure 9 shows the range of phase angles that occur for the various geometries and
bimaterial pairs. Due to the nonlinearity, the phase angle, ¥ 7, for any particular geometry
depends on the load. To limit the presentation, the results of Fig. 9 are presented at the
critical load where fracture is expected to occur for a specimen with slenderness ratio of
8.33. The notation used in the figure, (7)., refers to the value of y 7 that is predicted by the
nonlinear plate theory analysis when the load reaches its critical value, i.e., P = P, when
G™T = G.. Fracture toughnesses as a function of mode mixity for the glass/epoxy specimens
that are considered in this work were taken from the results presented by Liechti and Chai
(1992). Note that, in their 1992 paper, Liechti and Chai reported slightly different values
of elastic properties (¢ = —0.0605) from those presented in their 1991 work (¢ = —0.0604) ;
however, it was assumed that this slight change in ¢ would not affect the interfacial toughness
of the glass/epoxy system. Toughnesses for the alumina/niobium specimens were determined
from the work of Stout ez al. (1991). Selected toughness vs mode mix results for these two
interfaces are presented in Table 3. For the monolithic case, G, was taken to be 1750 J/m?,
independent of mode mixity. In general, the change in y» with load is small in the plate
theory analyses: for all three specimen types and all geometries of the present study, the
variation in ¥ is less than 0.9° over the range of loads considered, and 5 is observed to
decrease monotonically with increasing load. It is interesting to note that the range of mode
mixities that can be induced in the UDCB test becomes smaller as the magnitude of the

40
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Fig. 9. Mode mixity vs thickness ratio as predicted by the nonlinear plate theory analysis for different
bimaterial pairs.
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Table 3. Toughness (in J/m?) vs mode mix for Alumina/Niobium

and Glass/Epoxy
Alumina/Niobium Glass/Epoxy
tl/’l (ll/T)r G, (ll,f)t Gc
0.2 —28.80° 64 —11.44° 4.0
0.5 —~8.88° 106 17.86° 6.5
1.0 15.68° 334 28.28° 12.0
20 29.98° 575 30.07° 12.5
5.0 34.78° 631 28.49° 12.0

bimaterial constant, ¢, increases. This is in contrast to results from the recently proposed
single leg bending (SLB) test (Davidson and Sundararaman, 1996), where the range of
mode mixities increases with increasing ¢. The SLB test induces ranges of phase angles
outside the range caused by the UDCB test ; for example, for the glass/epoxy specimens, the
range of mode mixities induced by the SLB testis —56° < yr» < —34° and 29° < yr < 49°.
Fracture toughness testing at large magnitude phase angles may be performed using the
recently proposed unsymmetric end-notched flexure (UENF) test (Sundararaman and
Davidson, 1995).

Comparisons between the analytical predictions and finite element results for mode
mixity are presented in Fig. 10a and b. This figure presents the difference in » as predicted
by the NPT and FE methods at critical load (P = P.). This difference, (A 7)., is defined as

Ay =W — (Yr)i* 37

The accuracy of the NPT predictions for the alumina/niobium sample falls between the
results shown for the monolithic and glass/epoxy cases. In general, the accuracy of the NPT
analysis for mode mix is very good at all slenderness ratios, with a gradual improvement
with increasing a/t. If one accepts the FE results as being highly accurate, then the shape
of the G, vs ¢ curve will determine whether a 1-2° “error’ in i is important (i.e., whether
the NPT predictions may be used, without the need for FE analyses); in most cases this
error will be negligible compared to the scatter in the experimental data. In terms of
assessing absolute accuracy, based on the results presented in Davidson et al. (1995), as
well as those of the original verification study of the crack surface displacement method of
obtaining phase angles (Matos et al., 1989), the accuracy of the FE based CSD method is
very good. However, it is uncertain whether it is better than approximately 1°. Thus, it
could be argued that either the FE or NPT values may be used with virtually the same
accuracy. Finally, we point out that we have chosen to represent the error in ¥ in degrees,
rather than percent, because we believe this is 2 more meaningful measure. For example, if
the error in Y were measured in percent, then it is implicit that under a loading which
produces a phase angle of 1°, a 2° error in phase angle is more important than for a loading

1.0 100000 o/t = 8.33 3.0 Joeeso a/t = 8.33
joesen a/t = 16.7 cassa a/t = 16.7
asees g/t = 33.3 aawaa g/t = 33.3
0.0 1 2.0
(8%,). (a%,).
(degrees) | {degrees)
-1.0] 1.0 §
-2.0 v 0.0 v )
0.1 t/te 1 0.1 1 t/t 10
(a) (b)

Fig. 10. Comparison of phase angles from nonlinear plate theory analysis and finite element results
for (a) ¢ = 0.0, (b) ¢ = —0.0604.
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which produces a phase angle of 90°. We do not believe this to be the case. The convention
of showing the error in phase angle in degrees is also adopted in our works describing the
SLB and UENF tests (Davidson and Sundararaman, 1996 ; Sundararaman and Davidson,
1995).

TEST DESIGN AND DATA REDUCTION

For a given bimaterial pair of interest, there are a number of considerations in ‘design-
ing” the UDCB test, i.e., in determining plate thicknesses, crack lengths, specimen lengths
and specimen widths to obtain fracture toughness data at the mode mix of interest. These
considerations are discussed below and are used to make test design and data reduction
recommendations.

Finite width effects

As described in more detail in a previous work (Davidson and Sundararaman, 1996),
there are two types of constraint conditions that must be considered in tests of beam-type
specimens: global and local. The global conditions are scaled by the aspect (length-to-
width) ratio of the specimen and are reflected in the effective bending rigidities of the two
cracked regions, the opening displacement, and the total ERR. Very small aspect ratio
plates will globally be in plane strain (with respect to the width direction), and very large
aspect ratio plates will globally be in plane stress. The local conditions, for the small scale
yielding conditions assumed herein, depend on the proximity to a free edge (normal vector
parallel to y) of a particular point near the crack front. That is, consider a problem where
the plate width, b, is large. In the interior of the plate, the characteristic distance that scales
the K-field is given by R, where R, is the smaller of ¢, or #,. Points near the crack front
that are several times R, away from the free edge will locally be in plane strain. Using the
results of Nakamura (1991 ; 1992) and Nakamura and Parks (1988 ; 1989) as a guide, it is
likely that locally plane strain conditions apply, for the in-plane field, for near-crack front
points that are greater than approximately 0.03 R, from a free surface ; closer than this to
the edge, the corner singularity field begins to dominate. The local conditions are reflected
in the mode mix; the above indicates that for typical geometries, locally plane strain
conditions predominate for the in-plane field for the majority of the specimen’s width.

Based on the above, it is certainly most desirable to design a test for which both the
local and global constraint conditions are plane strain. Otherwise, possible non-uniformities
in the ERR and mode mix along the crack front and possible non-self-similar crack advance
significantly complicate data reduction, and make it difficult or impossible to experimentally
obtain a meaningful measure of fracture toughness at a given mode mix (Davidson and
Schapery, 1988 ; Davidson, 1990). Plane strain conditions are preferable, as the ERR and
mode mix will be constant along the crack front. For a finite width specimen, this will be
true everywhere but in the regions near the free edges, where the corner singularity fields
become important. If these regions are small with respect to the width, then the crack front
will remain essentially straight during advance, the effects of the near-edge regions on test
results may be considered negligible, and data reduction and interpretation are relatively
straightforward. Using the results herein along with those for laminated composites
(Davidson and Schapery, 1988 ; Davidson, 1990 ; Davidson et al., 1996), we would recom-
mend using test geometries for isotropic, bimaterial UDCB specimens with aspect ratios
(a/b) approximately equal to 1.0, and slenderness ratios (a/t) as large as possible. Small
aspect ratio plates are preferable, as this reduces the amount of transverse curvature and
the associated variation in ERR across the specimen’s width. Large slenderness ratios, and
hence large width-to-thickness ratios as well, increase the accuracy of the plate theory
analysis while simultaneously reducing the influence of any nonuniformities in ERR or
mode mix at the free edges. We have found that the limitation on slenderness ratio generally
comes in the form of applied load ; large slenderness ratio plates may have fracture loads
that are below the sensitivity of a given load cell.
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Fig. 11. Comparison of energy release rates from linear and nonlinear plate theory analyses for
¢ =0.0and a/t = 8.33.

On the use of linear theory

Figure 11 shows a comparison of ERR from linear and nonlinear plate theory analyses,
denoted as ‘LPT’ and ‘NPT,’ respectively. These two curves are for a homogeneous UDCB
specimen (¢ = 0.0) at a slenderness ratio of 8.33. These two curves have been found to
bound the results for all bimaterial pairs, slenderness ratios and thickness ratios studied to-
date. The LPT results are found from eqns (16)—(21) ; in lieu of eqn (22), the linear relations

N1=0; M1=Pa (38)

are used. Equivalently, these results can be reduced to give

(P?( DD,
er _ M) [ Mill2
G- = 52 \D, 4D,/ 39

The predictions for mode mixity by the linear plate theory analysis are compared to
corresponding results from nonlinear finite element runs for g/t = 8.33 in Fig. 12. The LPT
results are obtained from eqns (21), (28), (29), (32) and (38). For larger slenderness ratios,
the agreement in mode mixity improves from that which is shown. Also, for each of the
three bimaterial cases considered, curves are shown only for the ‘extreme thickness ratios’
(t,/t,=0.2 and 1.0 for the homogeneous case, and ¢,/t, = 0.2 and 5.0 for the alumina/

3 seesat,/t, = 1.0, e = 0.0
sasma t,/t, = 50, ¢ = 0.0
eeeco {, /1, = 0.2, ¢ = -0.0201
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ahdaa t,/t, = 5.0, ¢ = —-0.0604

Fig. 12. Comparison of phase angles from linear plate theory analysis and finite element results for
different bimaterial pairs. For a/r = 8.33.
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niobium and glass/epoxy systems), which bound all of the results from the remaining
thickness ratios.

Figures 4, 11 and 12 indicate that the accuracy of LPT is quite good for P < 1.0. For
the homogeneous and alumina/niobium cases, the maximum discrepancy in phase angle
for the geometries studied, for P < 1.0, is approximately 2°. For the glass/epoxy case, the
discrepancy in phase angles between LPT and FE is approximately 6° for ¢,/¢, = 0.2 and
P = 1.0. However, for this particular glass/epoxy UDCB specimen, the critical load, P,,
was predicted to equal 0.093 (using either the NPT or the nonlinear finite element analysis,
and the toughness values of Table 3). For this case, at £ = P, the discrepancy in iz between
the LPT and FE results is less than 1°. These results indicate that, if an estimate of G. at
the mode mix of interest (corresponding to a chosen #,/¢, between 0.2 and 5.0) is known a
priori, then a specimen geometry can often be chosen such that P, is less than 1.0 (i.e.,
where G'*T = G,). In such a case, interpolation of the curves of Fig. 12 may indicate that
a nonlinear analysis is unnecessary.

Data reduction

Regardless of the analysis that is used (LPT, NPT or FE), it is our recommendation
that an area method of data reduction (e.g., Whitney et al., 1984) be used. This approach
removes any uncertainty in geometrical or material properties from the observed toughness.
Note that if the mode mix parameter, Q,, is obtained from the expression given by Davidson
et al. (1995), this approach obviates the need for any finite element analyses. The choice of
whether 5 is obtained by LPT or NPT may be made based on the observed values of P,
as well as the (non)linearity of the experimental load vs deflection data.

CONCLUSIONS

An unsymmetric double cantilever beam test has been described and evaluated for its
suitability for the determination of interfacial fracture toughness. An analytical solution to
obtain ERR and mode mix in typical UDCB geometries has been presented and compared
to finite element predictions. These results have shown that the UDCB test may be used to
determine the fracture toughness of most bimaterial interfaces over a reasonably large
range of mode mixities.

The decision on whether or not to perform a FE analysis of the UDCB geometry is,
of course, up to the user. Based on the results in a previous work (Davidson and Sund-
araraman, 1996), values of Q, for use in the crack tip element equations can be obtained
from the expression given by Davidson et al. (1995) to an accuracy of approximately 2°.
Essentially this same accuracy in ¥+ is obtained using this value of ©Q, and the plate theory
equations. If the experimental results, in terms of the dependence of and scatter in the G,
vs ¥ curve indicate that this accuracy is sufficient, then it is likely that FE analyses are not
required. The combination of the UDCB, the single leg bending (Davidson and Sund-
araraman, 1996), and the unsymmetric end-notched flexure tests (Sundararaman and Dav-
idson, 1995) provide a means by which a relatively simple test specimen geometry can be
used to determine the fracture toughness of most bimaterial interfaces over a complete
range of mode mixities.
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